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Abstract In this article, we propose a new video object retrieval system. Our ap-
proach is based on a Spatio-Temporal data representation, a dedicated kernel design
and a statistical learning toolbox for video object recognition and retrieval. Using
state-of-the-art video object detection algorithms (for faces or cars, for example)
we segment video object tracks from real movies video shots. We then extract,
from these tracks, sets of spatio-temporally coherent features that we call Spatio-
Temporal Tubes. To compare these complex tube objects, we design a Spatio-
Temporal Tube Kernel (STTK) function. Based on this kernel similarity we present
both supervised and active learning strategies embedded in Support Vector Machine
framework. Additionally, we propose a multi-class classification framework dealing
with unbalanced data. Our approach is successfully evaluated on two real movies
databases, the french movie “L’esquive” and episodes from “Buffy, the Vampire
Slayer” TV series. Our method is also tested on a car database (from real movies)
and shows promising results for car identification task.
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1 Introduction

In the context of video object category classification, tasks become more and more
challenging, as some of the 20 “features” from the high-level feature task from
TRECVid 2009 campaign illustrates it:

— Classroom: a school - or university-style classroom scene. One or more students
must be visible. A teacher and teaching aids (e.g. blackboard) may or may not be
visible.

— Person-playing-a-musical-instrument - both player and instrument visible

— Bus: external view of a large motor vehicle on tires used to carry many passengers
on streets, usually along a fixed route. NOT vans and SUVs

— Person-riding-a-bicycle - a bicycle has two wheels; while riding, both feet are off
the ground and the bicycle wheels are in motion

The “high level features” or video object categories to be classified and retrieved are
not only classes of objects with wide appearance variability (e.g. person, vehicle...),
but also classes representing abstract concepts, such as events or actions. In order to
handle such complex categorization problems, we need a fast and efficient content-
based video retrieval system, which depends on good video object detection, relevant
visual features extraction and powerful machine learning techniques. In our work we
will consider that the video object detection task is achieved by any recent and very
efficient algorithm from state-of-the-art works.

In the framework of retrieving actors in movies, Everingham et al. in [4] proposed
to represent an actor by a “face track”, represented by a set of face descriptors
and clothing descriptors. The matching between two face tracks is based on min
distance between the two sets of descriptors and on quasi-likelihoods to obtain
posterior probability of matching. In a recent work, Kumar et al. [8] proposed a
novel algorithm to find faces in databases of more than 3 millions of images and even
distinguish different facial expressions. In [1], Apostoloff and Zisserman extended
the descriptors of face track aforementioned with 4 additional facial features and
preprocessed the data before the matching process. Furthermore, the matching is
not anymore based on evaluating the maximum of posterior probability of a label
but on random-fern classifiers. In [6] Guillaumin et al. proposed an approach based
on a graph of 13 facial features for single-person retrieval and multi-person naming.
In [17] Sivic et al. introduced multiple kernel learning (MKL) based on facial features
asin [1, 4, 6].

In our work, we also consider face tracks in video as the data to represent and
classify. However, we propose a framework to get rid off introducing prior knowl-
edge on the structure of video objects of interest. In case of actor face for example,
we want to avoid to use facial models to target a more generic representation. We
use a SVM classifier combined with kernel similarity functions for the retrieval and
recognition task. Instead of considering classical supervised approaches, our kernel-
based machine learning method allows us to provide either a supervised classification
of the data or, exploiting recent advances in machine learning techniques, an
interactive retrieval system, based on active learning strategies.

In our previous work [24], a video object is represented by a set of temporally
consistent chains of local descriptors SIFT (a bag of bags of features). A “kernel on
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Fig.1 STTK kernel-based actor learning and retrieval and recognition system

bags of bags” is designed to compare the similarity of two video objects. In [25],
the video object is represented by a “tubes” of visual features as well as spatial
location of features. The design of a new kernel embedding this spatial constraint has
been proved to be more powerful for actor retrieval in a real movie. In this paper,
we extend the actor retrieval of [24, 25] to multi-class object recognition task. Our
system is not only applied to category “person”, but other category like “car model”.
We obtain very interesting results for actor multi-class recognition and exhibit the
generalization capability of our approach to car model retrieval.
This paper is organized as follow:

— In Section 2, we introduce spatio-temporal coherency in the data representation,
which considers a video track as an entire object instead of a set of individual
images or key-frames [6]. From an object video track, we extract a set of spatio-
temporally consistent chains of local descriptors SIFT, that we call a “Spatio-
Temporal Tube”.

— In Section 3, we design a kernel “STTK” dedicated to our “Spatio-Temporal
Tube” data representation.

— In Section 4, we describe our kernel-based SVM classification framework for
both two-class retrieval task and multi-class recognition task. We also describe
how to deal with unbalanced training data, which is one of the undesirable
problem with SVM machine learning.

— In Section 5, our approach is tested on two real movie databases: the movie
“L’esquive” and episodes of the TV series “Buffy, the Vampire Slayer”, as well
as on a car database.

An overview of our system is presented in Fig. 1.

2 Spatio-Temporal Tube
2.1 Video tracks
For the databases “L’esquive”, faces of actors are detected by the algorithm Ad-

aBoost of Viola and Jones [20], extended by Lienhart and Maydt [9], and segmented
by ellipses which approximate face contours [24].
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For the databases “Buffy”, in order to make a fair comparison with the work done
by Apostoloff and Zisserman [1], the actor face extraction process for the TV series
“Buffy” database is not computed and we directly use face detection and tracking
results provided by the authors: face position, scale, frame number, with its ground
truth label. In a recent work, Cour et al. [2] showed that a partially labeled data
framework could lead to obtain a very large set of such data with ground truth more
easily. From the position and scale factor of face region they provided for Episode
2 and 5 of season 5 of TV series “Buffy, the Vampire Slayer”, we define an ellipse
(instead of the usual rectangle) to approximate the contour of the face. We then
extract from each shot containing the face track made of the face regions in the
successive frames.

2.2 Scale adaptive SIFT-based features

The first step of the feature extraction process is to detect points of interest and
extract SIFT descriptors automatically by Lowe [10] approach in each frame of the
face track. One face track is described by a set of vectors (several thousands of
vectors for a typical track) where each vector is a 128-dimensional SIFT descriptor
representing the 16 8-bin histogram of image gradient orientations inside a 4 x 4
spatial grid centered on one detected SIFT point. Our process of extraction and
representation of video object is an unsupervised process, without introducing any
model or dedicated facial feature in the region of interest pre-detected.

One of the main issues concerning the extraction of SIFT descriptors with original
algorithm [10] lies in the large variation in the size of face images in real movies,
which cause large variations of SIFT descriptors in face images, e.g. from several
points to several thousand points per image depending on the original image scale.
For example, a foreground face track and background face track contain very
different information because of the different resolutions. Even in a same face track
(of the same actor in the same scene), with “zoom in” and “zoom out” of the camera,
two face images in this same track might have a big difference in terms of size (in
our experiments it reaches a factor 10). When tracking similar SIFT points along a
face track, those variations avoid to match points which should be matched, leading
thus e.g.. from several tracked points to several hundred untracked ones. Figure 2a
shows example of SIFT feature extraction for three different images representing
large-scale, normal-scale and small-scale images. We can see that for large-scale
images, we extracted too many small-scale keypoints (that are not reliable features),
together with few large-scale keypoints (that are more reliable features). To reduce

(a) original scale (b) reduced scale (c) adaptive scale

Fig.2 Comparing fixed scale and adaptive scale for SIFT extraction
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the irrelevant features and make the algorithm tractable, the scales of images must
be reduced. However, if we reduce all the images at a same proportion, there might
be no feature extracted from small-scale images, see Fig. 2b. To solve this scaling
problem, we use adaptive scale SIFT extraction, so that we can extract enough SIFT
points even if the images are small while reducing the number of irrelevant points
extracted in big images, see Fig. 2c.

In our work, we use the codes of “SIFT++" of A. Vedaldi [19], which is based
on the algorithm of [10], to detect points of interest on face images and extract SIFT
feature from these points. The SIFT algorithm is based on a Gaussian pyramid of
the input image. The Gaussian image is down-sampled by a factor of 2 after each
octave to produce the difference-of-Gaussian images (see [10]). Setting the index of
the first octave “first-octave” ton = —1, 0, 1, 2... make the base of the pyramid to be
27" times of the input image, e.g. —1 corresponding to two times larger than the input
image. We make the “first octave” parameter adaptive to the scale of the face image
by selecting » that limits the scale of the first octave within a certain range (50 to 100
pixels in width).

We extract also the spatial position of each SIFT points in the track, then
normalize it with respect to the size of the face image, to finally enrich SIFT points
with their relative position in the track.

2.3 Optimized spatio-temporal feature extraction

An ideal face track should contain only consistent information to process face
recognition. However, since we do not preprocess the face tracks, the relevant SIFT
points, present in almost each frame of the track (for instance, SIFT on the nose, on
the eyes or on a scar...), are mixed up with many other SIFT points which are artefacts
as lighting changes, occlusions (hair, glasses...), or video compression blocks, etc. In
order to clean up these false points of interest, a tracking process assuming the spatio-
temporal coherency of relevant visual features in the face track is used to eliminate
non-persistent points in the face track.

One of the classic approach of SIFT points matching is to find the 2 nearest
neighbors of each keypoint from the first image among those in the second image,
and only accepting a match if the distance to the closest neighbor is less than 0.6 of
that to the second closest neighbor (see [10]). In this paper, we propose successive
frame spatio-temporal coherency features tracking strategy for SIFT points match-
ing. The tracking is done by selecting from two consecutive frames the 40 pairs of
best matched points with feature similarity (L2 distance of SIFT vectors below 150)
and spatial proximity (relative position below 0.2) and link them into chains. See red
lines of Fig. 5. There are two advantages of our tracking approach: First, we consider
the spatio-temporal coherency of relevant visual features of successive frames in the
face track, because matching for successive frames is more stable than matching for
isolated images, as illustrated in Fig. 3; Second, as two successive frames in a track are
very similar, our matching of keypoint compute only the distances between keypoint
of similar position and similar scale (relative to face scale), that makes our algorithm
much more efficient than matching by computing all the couples of keypoints of the
two images.

The tracking is based on the L? distance between pairs of SIFT descriptors from
two consecutive frames; we will call this distance “SIFT distance”. In order to match
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1 matched points

22 matched points 16 matched points 10 matched points

32 matched points 20 matched points 18 matched points 31 matched points

Fig. 3 Comparing of SIFT matching for isolated images and for successive frames. The numbers of
these eight frames are 10156, 10159, 10163, 10174, 10176, 10178, 10181 and 10183 respectively

the relevant points in a track, we should compute for each couple of consecutive
frames, the SIFT distances between all the possible pairs of SIFT descriptors and fill
a matrix as shown in Fig. 4a. In order to reduce the computation time, we assume
that two SIFT descriptions of a temporally persistent point must be very similar
in scale and position. Thus, we sort the SIFT vectors by ascendant order of scale,
then we do not compute the entire matrix as presented in Fig. 4a but we consider
only pairs of SIFT points, of similar scale, whose SIFT distance will be around the
diagonal (10% of the size of the matrix). We effectively compute the SIFT distance
for remaining pairs of points with a position difference lower than 20% of the size of
the face images, Fig. 4b. From the remaining pairs of SIFT points in the sparse matrix,
we first keep pairs of points whose SIFT distance is lower than an experimentally
determined threshold (fixed to 150, which are selected by cross-validation on the
training set tracks of “L’esquive” database). Then, among those remaining pairs, we
consider up to 40 of the best matching pairs. The resulting matrix is presented in
Fig. 4c where the remaining points represent the tracked SIFT points between two
consecutive frames.

All the pairs of matched SIFT points are linked into chains. These chains of
matched SIFT points, obtained from a face track, that we call a “tube”, hence
represent the temporal coherent support of face information. Such approach for
SIFT point tracking is quite economic, from a time processing point of view.

Nevertheless, this first alignment of SIFT points is not relevant enough because
some points of interest are disappearing in some frames. In fact, when tracking

SIFT scale

SIFT scale
)

SIFT scale

frame t+1
frame t+1
frame t+1

> >

frame t SIFT scale frame t SIFT scale frame t SIFT scale

(a) (b) ()

Fig. 4 Matrix of distances for two consecutive frames (black points: nearest SIFT descriptors) a full
matrix; b sparse matrix; ¢ selected matrix
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Fig. 5 Intra-tube chain
tracking. (Solid lines:
consistent chains, dash lines:
noise, green lines: link of two
short chains)

similar SIFT points along a track, the condition variations (scale, luminance, position,
etc.) avoid to match points which should be matched, leading thus an abundance
of short chains in a tube. This causes redundant data representation and expensive
computing.

We then propose “intra-tube chains tracking” technique [25] to obtain more
consistent and more compact chains extracted from each video track while reducing
the number of chains and thus reducing computational complexity. See green line of
Fig. 5. The intra-tube tracking is achieved by matching two short chains through their
average SIFT vectors (L? distance below 200 in our case) and the relative average
positions (below 0.3 in our work). The matching chains are then considered as the
same point tracked on the face and linked into a long chain. Thus, the chains of
SIFT descriptors become more consistent and the number of chains per tube is highly
reduced. Such process provides quite stable SIFT points in the feature space as shown
on Fig. 6b (one line represents a 128-dimensional SIFT vector while in column you
can see the variation of one of these 128 values along the chain).

2.4 Spatio-Temporal Tube data representation

As a result of our spatio-temporal coherent feature tracking, a video object is
represented by a tube of consistent chains of SIFT descriptors. To better represent
this structural visual information, we introduce the position of each SIFT point in the
representation of points in the tube, so that comparisons of chains in “same areas”

SIFT Vector

SIFT Vector

SIFT Vector

(C) Tube T (from “The ltalian Job") (f) 26 SIFTs along blue chain (plate) of T,

Fig. 6 Spatio-Temporal Tube, SIFT points along the same chain are of the same color a—¢ examples
of two face tubes and a car tube; d—f stability of SIFT points along three chains
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(of a face) have a stronger impact on overall similarity than comparisons of chains
from different areas.

We concatenate spatial positions after 128-dimension description of each SIFT
to obtain 130-dimension vectors and to provide tubes containing rich visual infor-
mation, that we call “Spatio-Temporal Tube”. Three examples of Spatio-Temporal
Tubes are shown in Fig. 6a—c, while Fig. 6d—f illustrate the temporal stability of SIFT
descriptors along its tracked chain.

3 Kernel design for Spatio-Temporal Tube

In our work, we design a kernel dedicated to our data representation, in order to
compare the similarity of two face video tracks, which are represented by two spatio-
temporal tubes of features. This kernel is called: Spatio-Temporal Tube Kernel
(STTK).

Let us denote T; a tube, C,; a chain of V;,; “SIFT” vectors and V},; a 130-dimension
vector (128-dimension SIFT vector S;; + 2-dimension spatial position Py;). Using
set formulation: 7; = {Cy;, ..., Ci;} and C,; = {Vy,, ..., V), We want to design a
kernel function K(7;, T;) which will represent the similarity between two tubes.

As presented in Section 2, SIFT vectors from the same chain are spatio-temporally
consistent. To reduce the amount of data to be processed, we propose to factorize
the SIFT tracked chains by representing each chain C,; with a unique vector C,;: the
mean of all the SIFT descriptors along this chain. It has to be noticed here that the
factorization process of SIFT tracked chains is not a simple averaging process of all
SIFT vectors along an interesting point into one mean SIFT vector. Indeed, although
SIFT points are tracked along object track in order to provide more temporally
consistent chains, “the same” interesting point along object track can lead to several
chains depending on the variability of its SIFT description in this track or view angles
tolerated for the object, etc. This is illustrated on Fig. 6b with, for instance, a SIFT
point extracted on Buffy mouth: brown chain “becoming” dark green chain. We want
to separate SIFT description from spatial position in the “SIFT” vector V},; in order
to better handle each one of these features. This factorization and separation process
is achieved through two mapping functions:

1 & -
$r(Cri) == Sy =Sy (1)
P
providing the mean SIFT vector and
1 < —
¢0(Co) = > Pu=P, )
I=1

providing the mean position vector.
We can prove that the similarity functions we are designing are valid kernels, using
definitions, proofs and properties on kernels from Chapter 3 in [16].

@ Springer



Multimed Tools Appl

Proved it exists an embedding function ® : T — H, which maps any tube 7; to
®(T;) in a Hilbert space H, one can define the kernel on bags K by a dot product in
the induced space H:

K(T;, T)) =< ®(T)), ®(T)) > (3)

The “power” similarity function between bags K, is a kernel function if the
similarity function between chains k. is a kernel:

Ciil 1Cy
K(T,,T)—ZZ||T|H 4G Co )

where |C,;| represents the length (number of frames) of the chain C,;, | T;| represents
the length of the tube T;. Indeed, if k.7 is a kernel, by definition there exists a
mapping function ¢, such that:

kcq(xa Y) =< ¢c(X), Pc(x) > .

Thus, we can rewrite K as:

Crl Cs
K(T, Tp—ZZ"T"' 1 < 4C). 9e(Cyp > .

Then, using dot product bilinear properties:

|Cri| |Cb|
K(T;, T =< 7 4G Z |T;| ¢e(Cyj) >,

which is still a dot product. We can then define a new mapping function such that:

|Cri|
O(T) =) 7 9(Co-
Thus, if k.7 is a kernel then K(T;, T;) is a kernel.
Let us focus now on the similarity function on “SIFT” Chains:

kc(cria Csj) = kf(d)f(cri)’ ¢f(csj))kp(¢p(cri)7 ¢p(csj))’ (5)

where k¢ is the feature similarity function between mean SIFT vectors of each chain
and k, is the position similarity function between mean position vectors of the same
two chains. If k and k, are kernels over 2 x 2~ then the product k sk, is also a
kernel. Thus, if ks and k, are kernels, k. is a minor kernel and k.7 in (4) also.

Using the power ¢ in the definition of K leads to a good approximation of max
function which, despite the claim in [21], turns out to be false since max function is
actually not positive definite as demonstrated by Siwei Lyu in the appendices of [11].
For this reason, from a theoretical point of view, it is not safe to use max function as
a kernel in an SVM. However, from a practical point of view, it might still achieve
good performances.

We have then to show that k  and k, are two kernel functions over (C,;, Cyj): We
use the Gaussian yx? kernel for the feature similarity function on chains:

1
kf(¢'f(cri), ¢f(Cx1')) = exXp <_EX2 (¢f(Cri)7 ¢f(CY]))> . (6)
1
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Let us remind that if ¢ is a mapping over 2" and if k is a kernel over 2'x.Z" then
k(¢ (x), ¢(y)) is a kernel function. Thus, using ¢ s the mapping function defined in (1),
kin (6) is a kernel function.

The position part of the minor kernel on chains k. is defined as the following
similarity function on the relative positions of the chains:

Cri - Cs‘ 2
kp(@p(Cri), 9p(Cs))) Xp(_ll¢p( ) — ¢p( ])II)

2
205

2 2
= exp <_ (X”‘ - XS/) + (Yri - ySf) ) , (7)

2
205

where (x,i, y,i) = ¢,(C,;) is the mean position of SIFT points along chain C,; of tube
T;. Combined with the mapping function ¢, defined in (2), k, in (7) is a kernel
function.

Let us remind that the position of a SIFT point is normalized by the size of the face
image. The position part k, introduces the importance of the comparison between
two chains approximately at the same position, e.g. left eye chain of tube 7; and
left eye chain of tube T';. For the comparison between two chains at much different
positions, e.g. left eye chain of tube 7; and mouth chain of tube 7', the weight is
reduced. Thus, the importance of this matching in the evaluation of the similarity is
also lowered.

One second effect of the kernel of (4) that can cause problems is the influence of
the the “size” of the tube (the length of the video track and the size of face images
in the track). Since the kernel is defined by form of “sum”, the “bigger” the tube,
the more chains it contains, hence the higher the value of the kernel concerning
the tube. For example, the kernel value between a tube of 100 chains and any other
tube is almost always higher than that between a tube of only 5 chains and any other
tube. To remove this effect, one technique is to normalize the kernel as described in
Chapter 3 of [16]:

K(T;, T))

®)

After normalization of kernel, the similarity of each tube with itself is always 1,
however large its “size”. Again, the proof that K’ in (8) is a kernel can be found
in Chapter 3 of [16].

4 Multi-class STTK SVM for object retrieval and recognition

We use a kernel-based SVM as classifier: the SVM is a robust and powerful
classification technique for two-class problems when data can be linearly separated;
kernel functions enable the linear separation of data, which cannot be linearly
separated in the original feature space, by projecting them into a Hilbert space of
higher dimension.
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For the multi-class classification task, we use the one-vs-all strategy, where N
binary SVMs are trained for solving a N-class problem. For each one of the g classes,
we train a binary SVM classifier and get the decision function:

I
Uy (x) = ZaiyiK(x,-, X)+b. 9)

i=1

The training process (finding the optimal «;) corresponds to a QP problem that we
solve with the classic SMO algorithm [14] which terminates when all of the Karush-
Kuhn-Tucker (KKT) optimality conditions are fulfilled. These conditions introduce
a global bound C on «; values which set the trade-off between the largest possible
margin between examples and the number of errors allowed.

Then we normalize u,(x) into R,(x) € [—1, 1], and defined it as the “relevance” of
each example. Labels are assigned to data according to the highest relevance among
the N SVMs:

n=arg max {R;(x)}. (10)
qg=1,..,.N
If R,(x) is over the confidence threshold, the label # is assigned to x.

One of the problems of the multi-class SVM classification is often to deal with
unbalanced datasets where negative examples far outnumber positive examples. An
unbalance training dataset could cause the excursion of separation boundary.

Many approaches have been used to deal with the unbalanced data. Biased
Penalties [12, 13, 22] consider different error costs for the positive (C*) and negative
(C7) classes instead of the global classic cost C mentioned previously. In our
experimentation we use the Biased Penalties proposed by Morik et al. [12]:

ct  N-

with NT the number of positive samples and N~ the number of negative samples.

5 Experiments

We have tested our STTK-based object retrieval and recognition system on three real
movie databases and obtained interesting results: (1) TV series “Buffy, the Vampire
Slayer” with same tracked ground truth data as in [1] to compare the performance of
our actor recognition framework with facial feature based approach and key-frame
based approach, to test our method of balancing unequal classes, to evaluate our
adaptive SIFT feature extraction and to evaluate our system against occlusion; (2)
Movie “L’esquive” to compare the performance of our actor retrieval framework
with our previous works [24, 25]. (3) “Car model” database to evaluate the capacity
of our system to be applied to other video object categories.

From the face tracks (respectively car tracks) of these three databases, we extract
sets of spatio-temporally coherent features, tubes of consistent chains of SIFT
descriptors, with the mean normalized position of SIFT points in each chain. These
visual features have been used as input to the retrieval system RETIN [5], with our
STTK kernel for SVM core.
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5.1 Actor recognition on TV series “Buffy”

The database “Buffy” consists of episodes 2 and 5 from season 5 of the TV series
“Buffy, the Vampire Slayer”, and contains 2,462 tracks over 12 actors. The tracks
vary in length from 1 to 404 frames, and there are 53,032 labeled face detections in
the database.

The two experimental scenarii on “Buffy” are precisely the ones defined in
Apostoloff and Zisserman work [1]: the first is the intra-episode recognition, we
train our classifiers on the 159 training tracks of episode 2 season 5, and test them
on all other tracks of the same episode that are at least 10 frames long (constraints
from [1]); the second is the inter-episode recognition, we used the 533 tracks from
episode 2 season 5 (training tracks and testing tracks of the first scenario) to train
the classifiers and then test them on the other episode, episode 5 season 5, which
contains 482 tracks of at least 10 frames.

The average number of SIFT chains extracted from a track is 68, varying from 1
to 253. We then put these tubes of SIFT vectors into our multi-class SVM machine
learning system for object recognition using our STTK kernel functions of (4), (5)
and (8). In our work, we set parameters ¢ = 2, o1 = 3, 0, = +/0.05, which are selected
by cross-validation on the training set tracks from episode 2 season 5 of “Buffy”
database.

5.1.1 Evaluation of STTK-based approach

We use the test set tracks from episode 2 season 5 of “Buffy” movie to: evaluate
adaptive SIFT feature extraction, test our method of balancing unequal classes, and
compare our system with key-frame based approach.

For the evaluation of our adaptive SIFT feature extraction, we test on different
way of extraction: with or without intra-tube tracking as described in Section
2.3, with fixed scale (first-octave n = 0) or with adaptive scale (first-octave n =
...—1,0,1,2...) as described in Section 2.2. As showed in Fig. 7a, the intra-tube
tracking process obtains more consistent chains extracted from each video track,
thus increases the precision while reducing the amount of data (number of chains
from 82 to 65). With scale-adaptive SIFT feature extraction, we extract almost the
same average number of chains per tube (from 65 to 66) while improve the precision
because of the enhancement resolution for minor images and the reduction of noise
for larger images.

For the evaluation of balancing unequal classes, we test respectively with same
penalties C (no balancing) and with Biased Penalties C (balancing). Figure 7b shows
the difference of before/after balancing training data with Biased Penalties. The
precision/recall curve of balanced training set is much better than that without
balancing process.

To compare with key-frame based approach for recognition, we select manually
the best representative image for each track of episode 2 season 5 of “Buffy”. We
test on the database and select best parameters for key-frame based approach. We
use same parameters of SIFT extraction as STTK based approach to extract SIFT
features from the key-frame of each track. The average number of SIFTs in a tube is
48, varying from 9 to 117. We use the same configuration of kernel of that in STTK-
based approach replacing two chains C,; and C;; by two SIFT vectors S,; and S;;.
See Fig. 7c for the comparison of key-frame based and STTK based SVMs. The
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Fig. 7 Precision/recall curves for actor recognition on “Buffy” database. Recall is the proportion of
tracks assigned labels at a given confidence level, and precision the proportion of correctly labelled
tracks. a Evaluation of adaptive SIFT extractions and intra-tube tracking; b evaluation of balancing;
¢ comparing key-frame based and STTK based approach

STTK based system is much better than the key-frame based one, illustrating that
the factorization of SIFT chains is not equivalent to a key-frame based approach.

5.1.2 Comparison with facial features based approach

For the comparison with the Random-ferns approach proposed by Apostoloff and
Zisserman [1], which is one of the facial features based approaches, we test our
multi-classes actor recognition system on two same scenarii as in [1]: intra-episode
and inter-episode actor recognition. Our precision/recall curves of intra-episode
and inter-episode are showed in Fig. 8 (continuous red lines). We have extracted
Precision of Random-ferns approach for several Recall rates from the curves of [1]
and reported in Table 1 which illustrates that our approach performs better than
Random-ferns approach. As explained in [1], the intra-episode performs better than
inter-episode due to the “ABAB shots” that are present in the same episode, e.g. two
alternate view angles during a face to face conversation.

A sample set of identification results of our STTK based actor recognition system
is showed in Fig. 9.
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Fig. 8 Precision/recall curves for actor recognition on “Buffy” database: a intra-episode, b inter-
episode

5.1.3 Robustness of data representation to occlusion

Facial occlusion is one of the challenging problem for face recognition. It has been
already shown in [3] that, given a registered face image, the facial occlusion causes
only a small drop in local approaches. To illustrate the robustness of our approach
against occlusion, we create image with different occlusion: “half upper face” images
and “half left face” images, see Fig. 10. We use entire faces to train our system then
compare multi-class precision/recall of recognizing entire faces, respectively with
upper half faces and left half faces. The curves of Fig. 8 show that our system can
overcome the problem of occlusion with a slight loss of precision. This robustness to
occlusion or partial data extraction is one explanation of our choice not to consider
facial features at first. Furthermore, this data representation is also more generic as
the next experiments illustrate it.

5.2 Active learning for object retrieval

This experiment exhibits the two main interesting properties of our framework. First,
designing a kernel function allows us not only to consider a recognition context as
presented before but also to take benefit from recent advances in machine learning
techniques to propose an interactive video object retrieval system. Second, our data
representation and our STTK-based SVM retrieval system shows high potential of
generalization to other kind of video objects. Active learning is a powerful machine
learning technique to incrementally build the training set instead of preprocessing
it. The high generalization capability and good user adaptability of active learning

Table 1 Quantitative precision results at different levels of recall

Recall Intra-episode Inter-episode

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
Random-ferns 098 094 078 0.68 0.6 0.9 0.8 075 0.65 055
Proposed method 1 097 091 081 0.7 091 085 076 071 0.65
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Fig. 9 Sample identifications from episode 05-05. Green squares mean correctly matched faces,
while red squares mean failure cases

made this technique attractive as well for binary object recognition tasks [7], as for
relevance feedback in video [23]. Several strategies have been proposed to iteratively
either minimize the error of generalization [15] or focus on most uncertain data [18]
in order to increase the size of the training set.

5.2.1 Comparison with previous work on Film “L’esquive”

In order to detect faces from the french movie “L’esquive”, we use the extension of
Lienhart and Maydt [9] of the popular face detection algorithm based on AdaBoost
proposed by Viola and Jones [20], implemented in the OpenCV library. Faces are
segmented by ellipses which approximates face contours [24]. This face detection
algorithm is actually the same as the one used in [1] and thus previous experiments
on Buffy database except that we do not perform any face tracking after detection.
The database “L’esquive” contains 200 face tracks of 11 actors, with 54 images of face
in each track on average. From the 200 tacks of the database “L’esquive”, we extract

(b)

Fig. 10 Test on occlusion: a entire face; b half upper face; ¢ half left face
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Fig. 11 MAP(%) for actor retrieval for the database “L’esquive”: a results for actor “Lydia”;
b results of the latest STTK version for the 3 most present actors “Lydia”, “Hanane” and “Crimon”
and an average on these actors

tubes of chains of SIFT descriptors. The number of chains extracted in a tube is either
169 (varying from 19 to 741) with short chains and fixed scale for the “first-octave”
as in [24], or 64 (varying from 16 to 260) with long chains and adaptive scale for the
“first-octave” as in [25]. We then put these tubes of SIFT vectors into our machine
learning system using our STTK kernel functions of (4), (5) and (8). In our work, we
set the same parameters as for actor recognition (¢ = 2, o1 = 3, 05 = +/0.05).

For the comparison with previous works, we train a binary SVM classifier for each
actor on “L’esquive” database with few examples: 2, 4 ... 20 examples are picked
up randomly in the whole database but preserving balance between positive and
negative examples. The Mean Average Precision (MAP) on the whole database
of 200 tracks is computed for character “Lydia” (as in previous works) to evaluate
the improvements of introducing adaptive scale SIFT feature extraction, optimizing
parameter o; and normalizing the kernel.

From Fig. 11a we can see that with the adaptive scale SIFT feature extraction,
we have more information for minor tubes and less noise for larger tubes, and thus
obtain improvements on Mean Average Precision, and reduce the average number
of chains per tube from 169 to 52. The kernel normalization (which can deal with the
great variation of chains numbers in the tubes) and the optimization of parameter
o) (which was set to 1 in previous works by cross-validation on training set from
“L’esquive” database) by cross-validation on the larger training set from episode 2
season 5 of “Buffy database”, improves about 3% on Mean Average Precision. On
Fig. 11a we show that our STTK system incrementally learns the 3 most significant
classes from “L’esquive database®.

5.2.2 Car model active retrieval

We test our STTK-based object retrieval system on a database of car tracks contain-
ing 3 car models (volkswagen beatle, volkswagen new beatle and mini cooper S),
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extracted by hand, from different movies “The Italian Job” (both versions 1969 and
2002 remake) and “Herbie: Fully Loaded” (2004). We make the assumption, as in
many previous works [1, 4, 6], that an object detection algorithm is provided. The
object detection step is thus seen as a data pre-processing, and we focus on the objet
retrieval task. In order to extract enough car tracks, the movies we chose are movies
in which cars get some kind of first role. The 52 car tracks vary in length from 6 to
155 frames for a total of 2,143 images and 30,357 SIFT vectors. The average number
of SIFT chains extracted from a track is 103, varying from 3 to 283.

We use the same parameter values as for the previous actor retrieval task except
for o, (higher) because position prior is less relevant for cars. Indeed, if faces are
meaningful mostly when captured in a frontal position, cars in movies are meaningful
from any view angle. Thus, including a spatial constraint on tracked points is not
relevant when view angles of the object in the tube are changing a lot.

We evaluate the performances of our system for retrieving different video objects
with respect to small sizes of training set using the same data representation and the
same kernel function as for actor retrieval. We train our STTK-based classifier for
each car model. We focus on retrieval results for training sets of up to 8 examples
picked up randomly in the whole database but preserving balance between positive
and negative examples. Results are reported for the 3 car models, using MAP (Mean
Average Precision) statistics on Fig. 12. These results illustrate that our retrieval
system achieves to learn, to classify the 3 different classes from very few examples.

5.2.3 Interactive learning car retrieval

Interactive learning [18] is a powerful active learning technique that interactively
builds the training set using annotations given by the user at each iteration. One
of the most popular active strategy focuses on most uncertain data [18]. In this
experiment, we use this latter strategy.

Figure 13 shows the interactive retrieval process of a car database. One car track
is displayed with 4 frames in order to better illustrate the variability of car view
angles. First iteration, the user initializes a query on Volkswagen Beetle (track
with a green square on Fig. 13a), all the tubes are ranked regarding their similarity

Fig. 12 MAP(%) for the car
model retrieval. The learning
starts with one positive and
one negative examples

Mean Average Precision

75 /, = © - mini cooper S
ed —<— volkwagen beatl
’
7of - » = volkwagen new beatl
65 i i i i i
2 3 4 5 6 7 8

Number of training sample
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to the query, 4 tubes among the 20 first displayed contain Mini Cooper S model
(Fig. 13b); second iteration, the user provides 3 more annotations with one more
positive example(green squares) and two negative ones (red squares on Fig. 13c);
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Fig. 13 Results of our interactive car retrieval system, one track is displayed with 4 frames: a query
initialization; b first iteration: tracks ranked regarding their similarity to the query; ¢ second iteration
with one more positive example (green squares) and two negative examples (red squares); d results
after 2 iterations
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after only 2 iterations : there is 1 tube of Mini Cooper S model remaining among the
20 first tubes displayed (Fig. 13d).

From our first tests on car model retrieval, we confirm the ability of our system to
generalize, as it is in terms of data representation and kernel design, to other video
objects rather than just faces. We also illustrate here the interest of designing kernel
function as similarity measure in order to take benefit from all recent advances in
machine learning such as active learning strategies. We are currently considering to
implement recent boosting car detection algorithms to automatically extract more
car tracks from movies, build a large database of car tracks and make it publically
available.

6 Conclusions

In this article, we have presented an efficient video object retrieval system, which
considered video object tracks as video objects. From each video object track, a set
of spatio-temporally consistent chains of tracked SIFT points is extracted. These sets
are automatically filtered in order to optimize our data representation and to define
our “spatio-temporal tubes”. In order to handle such complex data representation,
we have designed a relevant kernel function, Spatio-Temporal Tube Kernel. We
have integrated this kernel function in our multi-class SVM which provides very
interesting results on databases of real movies, allowing to address both actor
retrieval task and actor recognition within the same framework while dealing with
unbalanced classes and occlusion. Our approach has been successfully evaluated on
two real movies databases, the french movie “L’esquive” and episodes from “Buffy,
the Vampire Slayer” TV series. Our method has also been tested on a car database
(from real movies) and showed promising results for car retrieval task. Future work
will be to embed generative models into our learning system using Bayesian kernels.
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